Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
общая лексика
упругий удар
общая лексика
хэш-коллизия (столкновение, конфликт)
ситуация, когда два различных ключа выбирают ("хэшируют") одно и то же значение, указывают на одну и ту же ячейку в хэш-таблице
синоним
Смотрите также
общая лексика
неупругий удар
In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.
During the collision of small objects, kinetic energy is first converted to potential energy associated with a repulsive or attractive force between the particles (when the particles move against this force, i.e. the angle between the force and the relative velocity is obtuse), then this potential energy is converted back to kinetic energy (when the particles move with this force, i.e. the angle between the force and the relative velocity is acute).
Collisions of atoms are elastic, for example Rutherford backscattering.
A useful special case of elastic collision is when the two bodies have equal mass, in which case they will simply exchange their momenta.
The molecules—as distinct from atoms—of a gas or liquid rarely experience perfectly elastic collisions because kinetic energy is exchanged between the molecules’ translational motion and their internal degrees of freedom with each collision. At any instant, half the collisions are, to a varying extent, inelastic collisions (the pair possesses less kinetic energy in their translational motions after the collision than before), and half could be described as “super-elastic” (possessing more kinetic energy after the collision than before). Averaged across the entire sample, molecular collisions can be regarded as essentially elastic as long as Planck's law forbids energy from being carried away by black-body photons.
In the case of macroscopic bodies, perfectly elastic collisions are an ideal never fully realized, but approximated by the interactions of objects such as billiard balls.
When considering energies, possible rotational energy before and/or after a collision may also play a role.